ND

Tính nhanh :

a) \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)......\left(1-\frac{1}{64}\right)\)\(=\frac{9}{16}\)đúng không

b) \(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)......\left(1+\frac{1}{39.41}\right)\)

HG
26 tháng 8 2015 lúc 22:26

a, Đúng rồi đó

b, \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)+....+\left(1+\frac{1}{39.41}\right)\)

\(\frac{4}{1.3}.\frac{9}{2.4}.....\frac{1600}{39.41}\)

\(\frac{2.2.3.3....40.40}{1.3.2.4....39.41}\)

\(\frac{\left(2.3....40\right)\left(2.3....40\right)}{\left(1.2....39\right)\left(3.4....41\right)}\)

\(\frac{40.2}{41}\)

\(\frac{80}{41}\)

Bình luận (0)
LC
26 tháng 8 2015 lúc 22:28

\(\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{8^2}\right)\)

\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.....\frac{8^2-1}{8^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.....\frac{7.9}{8.8}\)

\(=\frac{\left(1.2.....7\right).\left(3.4.....9\right)}{\left(2.3.....8\right).\left(2.3.....8\right)}\)

\(=\frac{1.9}{8.2}=\frac{9}{16}\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết