A=1.4+1/4.7+1/7.10+...+1/91.94
=1/3.(3/1.4+3/4.7+3/7.10+...+3/91.94)
=1/3.(1-1/4+1/4-1/7+1/7-1/10+...+1/91-1/94)
=1/3.(1-1-94)
=1/3.(93/94)
=31/94
\(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{91\cdot94}\)
\(=\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{91\cdot94}\right)\)
\(=\frac{1}{3}\left(1-\frac{1}{94}\right)\)
\(=\frac{1}{3}\cdot\frac{93}{94}\)
\(=\frac{31}{94}\)
\(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+.......+\frac{1}{91\cdot94}\)
\(3A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+......+\frac{3}{91\cdot94}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{91}-\frac{1}{94}\)
\(3A=1-\frac{1}{94}=\frac{93}{94}\)
\(A=\frac{93}{94}:3\)