\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{90}+\dfrac{1}{110}\)
\(=\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...+\dfrac{1}{9x10}+\dfrac{1}{10x11}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=\dfrac{1}{2}-\dfrac{1}{11}=\dfrac{11}{22}-\dfrac{2}{22}=\dfrac{9}{22}\)
1/6+1/12+1/20+1/90+1/110
=1/2x3+1/3x4+1/4x5+...+1/9x10+1/10x11
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-...+1/9-1/10+1/10-1/11
=1/2-1/11=9/22