\(M=\frac{1}{99.97}-\frac{1}{97.95}-\frac{1}{95.93}-...-\frac{1}{5.3}-\frac{1}{3.1}.\)
\(M=-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{93.95}+\frac{1}{95.97}+\frac{1}{97.99}\right)\)
\(M=-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{93}-\frac{1}{95}+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)
\(M=-\frac{1}{2}.\left(1-\frac{1}{99}\right)=-\frac{1}{2}\cdot\frac{98}{99}=-\frac{49}{99}\)