\(\frac{8^5\times\left(-5\right)^8+\left(-2\right)^5\times10^9}{2^{16}\times5^7+20^8}\)
Tính
tính \(A=\frac{1}{2}\times\left(1+\frac{1}{1\times3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times...\times\left(1+\frac{1}{2015\times2017}\right)\)
Tính P = \(\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times\left(1+\frac{1}{4\times6}\right)\times...\times\left(1+\frac{1}{2009\times2011}\right)\)
\(\frac{\left(-7\right)^n}{\left(-7\right)^{n-1}}\)(n\(\ge1\)) Tính GTBT
Bài 2 Tính GTBT theo cách hợp lí nếu có thể
c) \(\frac{5^3\times3^3}{5^3\times0,5+125\times2,5}\)d)\(\frac{5\times7^1+7^3\times25}{7^5125-7^3\times50}\)e)\(\frac{8^5\times\left(-5\right)^8+\left(-2\right)^5\times10^9}{2^{16}\times5^7+20^8}\)
h)\(\frac{\left(-0,25\right)^{-5}\times9^4\times\left(-2\right)^{-3}-2^{-2}\times6^3}{2^9\times3^6+6^6\times40}\)
Bài 3 Chứng tỏ rằng
a)
tinh theo cach hop ly :
M=1-\(\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
\(a,\frac{3^6\times45^4-13^{15}\times5^{-9}}{27^4\times25^3+45^6}\)
\(b,\frac{\left(\frac{2}{5}\right)^7\times5^7+\left(\frac{9}{4}\right)^3\div\left(\frac{3}{16}\right)^3}{2^7\times5^2+512}\)
1.Tính giá trị tuyệt đối:(hẹp me)
a)\(\frac{72^3\times54^2}{108^4}\)
b)\(\frac{3^{10}\times11+3^{10}\times5}{3^9\times2^4}\)
c)\(\left(1:\frac{1}{7}\right)^2[\left(2^2\right)^3:2^5]\times\frac{1}{49}\)
d)\(\frac{4^6\times3^5-2^{12}\times3^6}{2^{12}\times9^3+8^4\times3^5}\)
Tính giá trị biểu thức:
a. \(\frac{20^5\times5^{10}}{100^5}\)
b. \(\frac{\left(0,9\right)^5}{\left(0,3\right)^6}\)
c. \(\frac{6^3+3\times6^2+3^3}{-13}\)
d. \(\frac{4^6\times9^5+6^9\times120}{8^4\times3^{12}-6^{11}}\)
e. \(\left(2^{-1}+3^{-1}\right):\left(2^{-1}-3^{-1}\right)+\left(2^{-1}\times2^0\right)\times2^3\)
f. \(\left(\frac{-1}{3}\right)^{-1}-\left(\frac{-3}{5}\right)^6+\left(\frac{1}{2}\right)^2:2\)
\(4\times\left(\frac{1}{4}\right)^2+25\times\left[\left(\frac{3}{4}\right)^3\div\left(\frac{5}{4}\right)^3\right]\div\left(\frac{3}{2}\right)^3\)
\(2^3+3\times\left(\frac{1}{2}\right)^0-1+\left[\left(-2\right)^2\div\frac{1}{2}\right]-8\)