Đặt \(\left|3x-1\right|=a\)
\(\Rightarrow\left(3x-1\right)^2=a^2\)
\(\Rightarrow A=a^2-4a+5\)
Biến đổi \(A\)ta được \(A=a^2-4a+4+1=\left(a-2\right)^2+1\ge1\)
Dấu " = " xảy ra \(\Leftrightarrow a-2=0\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)
Vậy GTNN của \(A=1\)tại \(\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)
\(\text{Đặt }\left|3x-1\right|=a\)
\(\Rightarrow\left(3x-1\right)^2=a^2\)
\(\Rightarrow a=a^2-4a+5\)
\(\text{Biến đổi A ta được }a=\left(a-2\right)^2+1\ge1\)
\(\text{Dấu "=" xảy ra khi }a-2=0=\left|3x-1\right|=2\Rightarrow\hept{\begin{cases}3x-1=2\\3x-1=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)
\(\text{Vậy min A=1}\Rightarrow\hept{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)