A=x4+12+2x3+2x+3x2
A=(x2)2+2(x2)(1)+(1)2-2x2+2x(x2+1)+3x2
A=(x2+1)2+2x(x2+1)+x2
Đặt a=x2+1
Khi đó đa thức trở thành:
A=a2+2ax+x2
A=(a+x)2
A=(x2+1+x)2
\(A=\left(x\right)^2+2\left(x\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)
\(A=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\)
Ta có:
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Leftrightarrow A\ge\frac{3}{4}\)
Dấu"=" xảy ra khi:
\(x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy GTNN của A là \(\frac{3}{4}\)khi x=\(\frac{-1}{2}\)
hình như theo cách giải của Nguyễn Triệu Khả Nhi thì GTNN của P=0 thì mới đúng
Theo lời giải của bạn Khả Nhi thì P chỉ\(\ge\frac{3}{4}^2=\frac{9}{16}.\)Mình góp ý zậy thui