Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

RZ

Tính giá trị của tổng sau : \(1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)

ST
13 tháng 1 2018 lúc 22:25

Đặt A là tên biểu thức

A=1.2.3+2.3.4+...+n(n+1)(n+2)

4A=1.2.3.4+2.3.4.4+...+n(n+1)(n+2).4

4A=1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 +...+ n(n+1)(n+2)(n+3) - (n-1)n(n+1)(n+2)

4A=[1.2.3.4+2.3.4.5+...+n(n+1)(n+2)(n+3)] - [0.1.2.3+1.2.3.4+...+(n-1)n(n+1)(n+2)]

4A=n(n+1)(n+2)(n+3)-0.1.2.3

A=\(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

Bình luận (0)
H24

\(A=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow4A=1.2.3.4+2.3.4.4+3.4.5.4+...+4n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow4A=1.2.3.4+1.2.3.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left(n+3-n+1\right)\)

\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n\right)\)

\(\Rightarrow4A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

Bình luận (0)

Các câu hỏi tương tự
G6
Xem chi tiết
RZ
Xem chi tiết
G6
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
SL
Xem chi tiết
HP
Xem chi tiết