`\sqrt{(3-\sqrt{5})^2}+\sqrt{5}=|3-\sqrt{5}|+\sqrt{5}=3-\sqrt{5}+\sqrt{5}=3`
`\sqrt{3}-\sqrt{(1+\sqrt{3})^2}=\sqrt{3}-|1+\sqrt{3}|=\sqrt{3}-1-\sqrt{3}=-1`
`\sqrt{(\sqrt{3}-1)^2}-\sqrt{3}=|\sqrt{3}-1|-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1`
\(\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{5}=\left|3-\sqrt{5}\right|+\sqrt{5}=3-\sqrt{5}+\sqrt{5}=3\)
\(\sqrt{3}-\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{3}-\left|1+\sqrt{3}\right|=\sqrt{3}-1-\sqrt{3}=-1\)
\(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)