Violympic toán 8

TA

Tính giá trị của biểu thức M =\(\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\)Biết rằng 2a=by+cz , 2b=ax+cz , 2c=ax+by

NL
20 tháng 2 2019 lúc 22:42

\(2a+2b+2c=2ax+2by+2cz\Rightarrow a+b+c=ax+by+cz\)

\(\Rightarrow a+b+c=ax+2a\Rightarrow a+b+c=a\left(x+2\right)\)

Tương tự ta có \(\left\{{}\begin{matrix}a+b+c=b\left(y+2\right)\\a+b+c=c\left(z+2\right)\end{matrix}\right.\)

Để M xác định thì \(x+2;y+2;z+2\ne0\)

Do đó nếu \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\) \(\Rightarrow\) đúng với mọi x, y, z

\(\Rightarrow\) giá trị M không xác định

Nếu \(a+b+c\ne0\Rightarrow\left\{{}\begin{matrix}x+2=\dfrac{a+b+c}{a}\\y+2=\dfrac{a+b+c}{b}\\z+2=\dfrac{a+b+c}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+2}=\dfrac{a}{a+b+c}\\\dfrac{1}{y+2}=\dfrac{b}{a+b+c}\\\dfrac{1}{z+2}=\dfrac{c}{a+b+c}\end{matrix}\right.\)

\(\Rightarrow M=\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

Bình luận (0)
NL
20 tháng 2 2019 lúc 22:43

Dòng 5 gõ nhầm \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a=0\\b=0\\c=0\end{matrix}\right.\) mới đúng

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
MP
Xem chi tiết
LT
Xem chi tiết
TA
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
KO
Xem chi tiết