Violympic toán 8

TA

Cho a+b+c=0 , x+y+z =0, \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

Chứng minh rằng :ax2+ by2 + cz2=0

TN
15 tháng 2 2019 lúc 23:21

ta có x+y+z=0 =>x^2=(y+z)^2
y^2=(x+z)^2
z^2=(x+y)^2
do đó ax^2+by^2+cz^2
=a(y+z)^2+b(x+z)^2+c(x+y)^2
=a(y^2+2yz+z^2)+b(x^2+2xz+z^2)
+c(x^2+2xy+y^2)
=x^2(b+c)+y^2(a+c)+z^2(a+b)
+2(ayz+bxz+cxy) (1)
thay b+c=-a ,a+c=-b , a+b=-c do a+b+c=0
và ayz+bxz+cxy=0 do a/x+b/y+c/z=0 vào (1) ta được
ax^2+by^2+cz^2 = -(ax^2+by^2+cz^2)
=> ax^2+by^2+cz^2=0

Bình luận (2)
NL
15 tháng 2 2019 lúc 23:24

Ta có:

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{a+b}{x+y}=0\Leftrightarrow ay\left(x+y\right)+bx\left(x+y\right)+xy\left(a+b\right)=0\)

\(\Leftrightarrow axy+ay^2+bx^2+bxy+axy+bxy=0\)

\(\Leftrightarrow ay^2+2axy+2bxy+bx^2=0\)

Vậy:

\(ax^2+by^2+cz^2=ax^2+by^2-\left(a+b\right)\left(x+y\right)^2\)

\(=ax^2+by^2-\left(ax^2+2axy+ay^2+bx^2+2bxy+by^2\right)\)

\(=-\left(ay^2+2axy+2bxy+by^2\right)=-0=0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TL
Xem chi tiết
TT
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
NH
Xem chi tiết