A=x2y−y+xy2−xx2y−y+xy2−x
A=(x2y−y)+(xy2−x)(x2y−y)+(xy2−x)
A=y(x2−1)+x(y2−1)y(x2−1)+x(y2−1)
A=y(x-1)(x+1)+x(y-1)(y+1)
thay x=-5 và y=2 ta có:
A=2(-5-1)(-5+1) - 5(2-1)(2+1)
A=2 . (-6) . (-4) - 5 . 3
A=48 - 15
A= 33
\(x^2.y-y+x.y^2-x=\left(-5\right)^2.2-2+\left(-5\right).2^2-\left(-5\right)\)
\(=25.2-2-5.4+5=50-2-20+5=33\)
Trả lời:
A = x2y - y + xy2 - x = ( x2y + xy2 ) - ( x + y ) = xy ( x + y ) - ( x + y ) = ( x + y )( xy - 1 )
Thay x = - 5; y = 2 vào A, ta có:
A = ( - 5 + 2 )( - 5.2 - 1 ) = - 3.( - 11 ) = 33