Bài này t đăng làm đc rồi, zô mà xem
Bài này t đăng làm đc rồi, zô mà xem
Cho \(A=\dfrac{a^6-2a^5+a-2}{a^5+a}\)\(\left(a\ne-1\right)\)
a)Rút gọn A
b) Tính A biết \(\dfrac{a}{x+y}=\dfrac{5}{x+z}\) và \(\dfrac{25}{\left(x+z\right)^2}=\dfrac{16}{\left(z-y\right)\left(2x+y+z\right)}\)
a.Cho \(-\dfrac{5}{3}\le x\le\dfrac{5}{3};x\ne0\) và \(\sqrt{5+3x}-\sqrt{5-3x}=a\)
Tính giá trị của biểu thức P=\(\dfrac{\sqrt{10+2\sqrt{25-9x^2}}}{x}\) theo a
b.cho x,y,z>0 và x+y+z=12.Tìm GTLN của biểu thức
M=\(\left(\dfrac{2x+y+z-15}{x}\right)+\left(\dfrac{x+2y+z-15}{y}\right)+\left(\dfrac{x+y+2z-24}{z}\right)\)
tìm giá trị nhỏ nhất của biểu thức
\(A=\dfrac{\left(x-1\right)^2}{z}+\dfrac{\left(y-1\right)^2}{x}+\dfrac{\left(z-1\right)^2}{y}\)
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
Cho x,y,z khác 0 và x+y+z=2008 . Tính giá trị biểu thức : \(P=\dfrac{x^3}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^3}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^3}{\left(z-y\right)\left(z-x\right)}\)
Xét các số thực dương x, y, z thay đổi sao cho: \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=0\)
1, Chứng minh rằng: \(\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\ge1\)
2, Tìm giá trị lớn nhất của biểu thức \(P=x^2+y^2+z^2-\dfrac{xy}{x+y}-\dfrac{yz}{y+z}-\dfrac{zx}{z+x}\)
Cho ba số thực dương x, y, z thỏa mãn \(x+y\le z\) . Tìm GTNN của biểu thức:
\(A=\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\)
Cho \(A=\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}.\left(\dfrac{\sqrt{y+z}}{x}+\dfrac{\sqrt{z+x}}{y}+\dfrac{\sqrt{x+y}}{z}\right)\)
Tìm Min A biết x,y,z là 3 số thực dương thay đổi có tổng bằng \(\sqrt{2}\)
tìm x,y,z để biểu thức sau có giá trị bằng 2
\(A=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)