A\(\ge\)0. Dấu "=" xảy ra <=> x=y=z=1
A\(\ge\)0. Dấu "=" xảy ra <=> x=y=z=1
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
Các số thực dương x,y,z thỏa mãn điều kiện: x+y+z=1. Tìm giá trị nhỏ nhất của:
\(F=\dfrac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Xét các số thực dương x, y, z thay đổi sao cho: \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=0\)
1, Chứng minh rằng: \(\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\ge1\)
2, Tìm giá trị lớn nhất của biểu thức \(P=x^2+y^2+z^2-\dfrac{xy}{x+y}-\dfrac{yz}{y+z}-\dfrac{zx}{z+x}\)
Cho các số thực dương x, y, z thoả mãn \(xyz=1\). Tìm giá trị nhỏ nhất của biểu thức: \(E=\dfrac{1}{x^3\left(y+z\right)}+\dfrac{1}{y^3\left(z+x\right)}+\dfrac{1}{z^3\left(x+y\right)}\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
Tìm GTLN của biếu thức
P= x\(\sqrt{\dfrac{\left(1+y^2\right).\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right).\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right).\left(1+y^2\right)}{1+z^2}}\)
Tính giá trị biểu thức: \(Q=\dfrac{a^6-2a^5+a-2}{a^5+1}\). Biết \(\dfrac{a}{x+y}=\dfrac{5}{x+z}\) và \(\dfrac{25}{\left(x+z\right)^2}=\dfrac{16}{\left(z-y\right)\left(2x+y+z\right)}\)
Cho x,y,z > 0 và x+y+z=1.Tìm giá trị nhỏ nhất của \(X=\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)\)