a: \(=\dfrac{a^2-b^2}{\dfrac{\sqrt{2}}{2}a+b\cdot0-2a\cdot0}=\dfrac{a^2-b^2}{\dfrac{\sqrt{2}}{2}a}\)
b: \(=3a+b-a=2a+b\)
a: \(=\dfrac{a^2-b^2}{\dfrac{\sqrt{2}}{2}a+b\cdot0-2a\cdot0}=\dfrac{a^2-b^2}{\dfrac{\sqrt{2}}{2}a}\)
b: \(=3a+b-a=2a+b\)
tính giá trị biểu thức sau:
\(G=\dfrac{tan30^o+tan40^o+tan50^o+tan60^o}{1-2sin^210^o}\)
cho hàm số y=(m+3)x^2-2(m+1)x+m biết đồ thị hàm số cắt trục ox tại hai điểm có hoàng độ x1, x2 với giá trị nào của a thì biểu thức F=(x1 -a)(x2-a) ko phụ thuộc vào m
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
CM BT ko phụ thuộc vào tham số x
\(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
B\(=\frac{tan^2x}{sin^2x.cos^2x}-\left(1+tan^2x\right)^2\)
Chứng minh đẳng thức: cos (\(\dfrac{\Pi}{2}\)- a) sin (\(\dfrac{\Pi}{2}-b\)) - sin(a - b) = cos a. sin b
Cho biểu thức \(B=cos^2x+cos^2\left(x+y\right)-2cosx.cosy.cos\left(x+y\right)\). Rút gọn B ta được kết quả \(B=a+bcos2y\). Tính giá trị \(H=2a+3b\)
Cho các số thực dương a, b thỏa mãn điều kiện: \(a+b< =1\). Tìm GTNN của biểu thức: \(P=\dfrac{b^2}{a^2b^2+b^2+1}+\dfrac{b}{2a}\)
Chứng minh các hệ thức sau :
a) \(\dfrac{1-2\sin^2a}{1+\sin2a}=\dfrac{1-\tan a}{1+\tan a}\)
b) \(\dfrac{\sin a+\sin3a+\sin5a}{\cos a+\cos3a+\cos5a}=\tan3a\)
c) \(\dfrac{\sin^4a-\cos^4a+\cos^2a}{2\left(1-\cos a\right)}=\cos^2\dfrac{a}{2}\)
d) \(\dfrac{\tan2x.\tan x}{\tan2x-\tan x}=\sin2x\)
Tính A = tan 20o.tan 80o + tan 80o.tan 140o + tan 140o.tan 20o