HN

tính giá trị biểu thức a4+b4+c4 biết a+b+c=0 và a2+b2+c2=2

NT
28 tháng 10 2016 lúc 17:21

gọi a+b+c=0 là   1

a^2+b^2+c^2 la  2

Bình phương 2 ve cua 1 ta có:

a^2+b^2+c^2+(ab+ac+bc)=0

2+2.(ab+bc+ca)=0

ab+bc+ca= -1   goi day la 3

Bình phương 2 vế của 3 ta có

a^4+b^4+c^4 +2.(a^2.b^2+b^2.c^2+a^2.c^2)=1

a^4+b^4+c^4 +2.4=1

a^4+b^4+c^4=-7

Bình luận (0)
OO
28 tháng 10 2016 lúc 22:17

gọi a+b+c=0 là 1
a^2+b^2+c^2 la 2
Bình phương 2 ve cua 1 ta có:
a^2+b^2+c^2+﴾ab+ac+bc﴿=0
2+2.﴾ab+bc+ca﴿=0
ab+bc+ca= ‐1 goi day la 3
Bình phương 2 vế của 3 ta có
a^4+b^4+c^4 +2.﴾a^2.b^2+b^2.c^2+a^2.c^2﴿=1
a^4+b^4+c^4 +2.4=1
a^4+b^4+c^4=‐7

Bình luận (0)
NT
10 tháng 7 2019 lúc 13:15

Ta có a + b + c = 0

=> ( a + b + c)^2 = 0

<=> a^2+b^2 +c^2 +2ab+2bc+2ac = 0 
<=> a^2 + b^2 + c^2 = -2(ab+bc+ac).

Thay a^2 + b^2 + c^2 = 2 => 2 = -2(ab+bc+ac)

=> ab + bc +ac = -1 
Ta có:

(a^2+b^2+c^2) = 2

<=> (a^2+b^2+c^2)^2 = 4

<=> a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2 = 4

<=> a^4+b^4+c^4 + 2(a^b^2+b^2c^2+a^2c^2) = 4 (1) 
Do 2(ab+bc+ac)^2 = 2(a^2b^2+b^2c^2+a^2c^2 + 2a^2bc+2ab^2c+2abc^2) (2) 
Từ (1)(2) => a^4+b^4+c^4+2(ab+bc+ac)^2 - 4abc(a+b+c) = 4(*) 
Thay (ab+bc+ac) = -1 và a+b+c = 0

Từ(*)  => a^4 + b^4 + c^4 +2(-1)^2 -4abc.(0) = 4 
<=> a^4 + b^4 + c^4 + 2 = 4

=> a^4 + b^4 + c^4 = 2

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
NP
Xem chi tiết
BA
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
Xem chi tiết
MK
Xem chi tiết