\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
****
\(a=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(a=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(a=1-\frac{1}{100}\)
\(a=\frac{99}{100}\)