yêu cầu bạn ơi?
\(G=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3G=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3G-G=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)\(-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{100}{3^{100}}\)
\(2G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(3M-M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)\(-1-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{99}}\)
\(2M=3-\frac{1}{3^{99}}\Leftrightarrow M=\frac{3}{2}-\frac{1}{3^{99}.2}\)
\(\Rightarrow2G=\frac{3}{2}-\frac{1}{3^{99}.2}-\frac{100}{3^{100}}\)
\(\Rightarrow G=\frac{3}{4}-\frac{1}{3^{99}.2^2}-\frac{100}{3^{100}.2}\)