PD

Tinh G=1/3+2/3^2+3/3^3+...+100/3^100

TP
5 tháng 11 2019 lúc 20:11

yêu cầu bạn ơi?

Bình luận (0)
 Khách vãng lai đã xóa
KN
5 tháng 11 2019 lúc 20:26

\(G=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3G=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3G-G=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)\(-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{100}{3^{100}}\)

\(2G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(3M-M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)\(-1-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{99}}\)

\(2M=3-\frac{1}{3^{99}}\Leftrightarrow M=\frac{3}{2}-\frac{1}{3^{99}.2}\)

\(\Rightarrow2G=\frac{3}{2}-\frac{1}{3^{99}.2}-\frac{100}{3^{100}}\)

\(\Rightarrow G=\frac{3}{4}-\frac{1}{3^{99}.2^2}-\frac{100}{3^{100}.2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
NK
Xem chi tiết
TH
Xem chi tiết
SH
Xem chi tiết
LT
Xem chi tiết
VA
Xem chi tiết
LT
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết