\(\frac{7}{3.13}+\frac{7}{13.23}+\frac{7}{23.33}+\frac{7}{33.43}\)
\(=\frac{7}{10}\left(\frac{10}{3.13}+\frac{10}{13.23}+\frac{10}{23.33}+\frac{10}{33.43}\right)\)
\(=\frac{7}{10}\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+\frac{1}{33}-\frac{1}{43}\right)\)
\(=\frac{7}{10}\left(\frac{1}{3}-\frac{1}{43}\right)\)
\(=\frac{7}{10}\left(\frac{43}{129}-\frac{3}{129}\right)\)
\(=\frac{7}{10}.\frac{40}{129}\)
\(=\frac{28}{129}\)
mk làm đúng rồi nha, ko tin bấm thử máy tính
7/3.13 + 7/13.23 + 7/23.33 + 7/33.43
= 7/10.(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43)
= 7/10.(1/3-1/43)
= 7/10 . 14/43
= 49/215
Đặt A ta có :
\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times56}\)
\(A=\frac{7}{10}\times\left(\frac{10}{3\times13}+\frac{10}{13\times23}+...+\frac{10}{53\times56}\right)\)
\(A=\frac{7}{10}\times\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+...+\frac{1}{53}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}\times\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}\times\frac{20}{63}\)
\(\Rightarrow A=\frac{2}{9}\)
Ta có: 7/3.13 + 7/13.23 + 7/23.33 + 7/33.43
=7.10/3.13.10 + 7.10/13.23.10 + 7.10/23.33 + 7.10/33.43
= 7/10.(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43)
= 7/10.(1/3-1/43) = 7/10 . 14/43
= 49/215