\(=\frac{2\sqrt{2}\left(1-\sqrt{3}\right)}{3\sqrt{2-\sqrt{3}}}\)
\(=\frac{2.\left(1-\sqrt{3}\right).\sqrt{2}.\sqrt{2+\sqrt{3}}}{3.\sqrt{2-\sqrt{3}}.\sqrt{2+\sqrt{3}}}\)
\(=\frac{2.\left(1-\sqrt{3}\right).\sqrt{2\left(2+\sqrt{3}\right)}}{3.\sqrt{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}}\)
\(=\frac{2.\left(1-\sqrt{3}\right).\sqrt{4+2\sqrt{3}}}{3.\sqrt{2^2-\left(\sqrt{3}\right)^2}}\)
\(=\frac{2\left(1-\sqrt{3}\right)\sqrt{\left(1+\sqrt{3}\right)^2}}{3.\sqrt{4-3}}\)
\(=\frac{2\left(1-\sqrt{3}\right)|1+\sqrt{3}|}{3\sqrt{1}}\)
\(=\frac{2\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}{3}\)
\(=\frac{2\left(1^2-\left(\sqrt{3}\right)^2\right)}{3}\)
\(=\frac{2.\left(-2\right)}{3}=\frac{-4}{3}\)