TP

Tính: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+..........+\frac{1}{997.998}+\frac{1}{999.1000}\)

H24
20 tháng 7 2017 lúc 13:09

Đặt Q = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{997.998}+\frac{1}{999.1000}\)

Đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{997.999}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{997}-\frac{1}{999}\)

\(2A=1-\frac{1}{999}\)

\(2A=\frac{998}{999}\)

\(\Leftrightarrow A=\frac{499}{999}\)

Đặt B = \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{998.1000}\)

\(2B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{998}-\frac{1}{1000}\)

\(2B=\frac{1}{2}-\frac{1}{1000}\)

\(B=\frac{499}{1000}\)

Vậy Q = A + B = \(\frac{499}{999}+\frac{499}{1000}\)

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
LH
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết