Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TP

Tính: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.......+\frac{1}{997.998}+\frac{1}{999.1000}\)

TN
19 tháng 7 2017 lúc 21:25

\(\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{999.1000}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..........+\frac{1}{999}-\frac{1}{1000}\)

\(=1-\frac{1}{1000}=\frac{999}{1000}\)

Bình luận (0)
MC
20 tháng 7 2017 lúc 6:15

Đặt 

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{999.1000}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)

\(\Leftrightarrow A=1-\frac{1}{1000}\)

\(\Leftrightarrow A=\frac{999}{1000}\)

Bình luận (0)
MC
21 tháng 7 2017 lúc 7:29

Đặt:

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A=1-\frac{1}{100}\)

\(\Leftrightarrow A=\frac{99}{100}\)

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
LH
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết