VL

Tính \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)

HV
6 tháng 12 2019 lúc 20:41

\(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)

\(=\frac{1}{2x}-1+1+\frac{1}{2x-1}+\frac{1}{2x\left(1-2x\right)}=\frac{1-2x}{2x\left(1-2x\right)}-\frac{2x}{2x\left(1-2x\right)}+\frac{1}{2x\left(1-2x\right)}\)

\(=\frac{1-2x-2x+1}{2x\left(1-2x\right)}=\frac{2}{2x\left(1-2x\right)}=\frac{1}{x\left(1-2x\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
EC
6 tháng 12 2019 lúc 20:41

Ta có: \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)

\(\frac{1-2x}{2x}+\frac{2x}{2x-1}-\frac{1}{2x\left(2x-1\right)}\)

\(\frac{\left(1-2x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\frac{2x.2x}{2x\left(2x-1\right)}-\frac{1}{2x\left(2x-1\right)}\)

\(\frac{-\left(4x^2-4x+1\right)}{2x\left(2x-1\right)}+\frac{4x^2}{2x\left(2x-1\right)}-\frac{1}{2x\left(2x-1\right)}\)

\(\frac{-4x^2+4x-1+4x^2-1}{2x\left(2x-1\right)}\)

\(\frac{4x-2}{2x\left(2x-1\right)}\)

\(\frac{2\left(2x-1\right)}{2x\left(2x-1\right)}=\frac{1}{x}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NA
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
NL
Xem chi tiết
HT
Xem chi tiết
LH
Xem chi tiết