Bài 2: Định lí côsin và định lí sin

QL

Tính diện tích tam giác ABC và bán kính đường tròn ngoại tiếp tam giác ABC trong các trường hợp sau:

a) Các cạnh \(b = 14,c = 35\) và \(\widehat A = {60^o}\)

b) Các cạnh \(a = 4,b = 5,c = 3\)

HM
25 tháng 9 2023 lúc 16:36

a) Áp dụng công thức: \(S = \frac{1}{2}bc\sin A\), ta có:

\(S = \frac{1}{2}.14.35.\sin {60^o} = \frac{1}{2}.14.35.\frac{{\sqrt 3 }}{2} \approx 212,2\)

Áp dụng đl cosin, ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)

\(\begin{array}{l}
\Rightarrow {a^2} = {14^2} + {35^2} - 2.14.35.\cos {60^o} = 931\\
\Rightarrow a \approx 30,5
\end{array}\)

\( \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{30,5}}{{2\sin {{60}^o}}} \approx 17,6\)

b) Ta có: \(p = \frac{1}{2}.(4 + 5 + 3) = 6\)

Áp dụng công thức Heron, ta có:

\(S = \sqrt {p(p - a)(p - b)(p - c)}  = \sqrt {6(6 - 4)(6 - 5)(6 - 3)}  = 6.\)

Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{4.5.3}}{{4.6}} = 2,5.\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết