Bài 2: Định lí côsin và định lí sin

QL

Cho tam giác ABC có góc B nhọn, AD và CE là hai đường cao.

a) Chứng minh \(\frac{{{S_{BDE}}}}{{{S_{BAC}}}} = \frac{{BD.BE}}{{BA.BC}}.\)

b) Biết rằng \({S_{ABC}} = 9{S_{BDE}}\) và \(DE = 2\sqrt 2 .\) Tính \(\cos B\) và bán kính đường tròn ngoại tiếp tam giác ABC.

KT
25 tháng 9 2023 lúc 16:41

Tham khảo:

a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\) cho tam giác ABC và BED, ta có:

\({S_{ABC}} = \frac{1}{2}.BA.BC.\sin B;{S_{BED}} = \frac{1}{2}..BE.BD.\sin B\)

\( \Rightarrow \frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}.BE.BD.\sin B}}{{\frac{1}{2}.BA.BC.\sin B}} = \frac{{BE.BD}}{{BA.BC}}\)

b) Ta có: \(\cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}}\)

Mà \(\frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{1}{9} \Rightarrow \frac{{BD}}{{BA}}.\frac{{BE}}{{BC}} = \frac{1}{9}\)

\( \Rightarrow \cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}} = \frac{1}{3}\)

+) Xét tam giác ABC và tam giác DEB ta có:

\(\frac{{BE}}{{BC}} = \frac{{BD}}{{BA}} = \frac{1}{3}\) và góc B chung

\( \Rightarrow \Delta ABC \sim \Delta DEB\) (cgc)

\( \Rightarrow \frac{{DE}}{{AC}} = \frac{1}{3} \Rightarrow AC = 3.DE = 3.2\sqrt 2  = 6\sqrt 2 .\)

Ta có: \(\cos B = \frac{1}{3} \Rightarrow \sin B = \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}}  = \frac{{2\sqrt 2 }}{3}\) (do B là góc nhọn)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AC}}{{\sin B}} = 2R \Rightarrow R = \frac{{6\sqrt 2 }}{{\frac{{2\sqrt 2 }}{3}}}:2 = \frac{9}{2}\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết