Hoành độ giao điểm của hai đường cong là nghiệm của phương trình
Đáp án D
Hoành độ giao điểm của hai đường cong là nghiệm của phương trình
Đáp án D
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x), y=0, x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0, x=a bằng:
Cho hình phẳng (H) giới hạn bởi đường cong có phương trình
y
=
x
2
−
4
x
+
3
và đường thẳng y=x+3 (phần đô đậm trong hình vẽ). Tính diện tích S của hình phẳng (H)
A. S = 47 2 .
B. S = 39 2 .
C. S = 169 2 .
D. S = 109 2 .
Cho hình phẳng (H) giới hạn bởi đường cong có phương trình y = x 2 - 4 x + 3 và đường thẳng y = x + 3 (phần đô đậm trong hình vẽ). Tính diện tích S của hình phẳng
Tính diện tích S của hình phẳng (H) giới hạn bởi các đường cong y = - x 3 + 12 x và y = - x 2
Diện tích S của hình phẳng (H) giới hạn bởi hai đường cong y = - x 3 + 12 x v à y = - x 2 là:
Cho hàm số liên tục trên [a;b] Diện tích hình phẳng S giới hạn bởi đường cong y = f(x) trục hoành và các đường thẳng x=a; x=b; (a<b) được xác định bởi công thức nào sau đây
Gọi S là diện tích của hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x 4 + x 2 , trục hoành, trục tung và đường thẳng x = 1. Biết S = a 5 + b , a , b ∈ ℚ . Tính a + b
A. a + b = - 1
B. a + b = 1 2
C. a + b = 1 3
D. a + b = 13 3
Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x 3 - 4 x , trục hoành và hai đường thẳng x=-2, x=4 là:
Tính diện tích S của hình phẳng giới hạn bởi các đường y = ex, y = e–x, x = 1.
A. S = e + 1 2 - 2
B. S = e - 1 e - 2
C. S = e + 1 e
D. S = e + 1 e - 2