Giải các PT sau:
1. \(\dfrac{\left(2\cos2x-1\right)\left(\sin x-3\right)}{\sin x}=0\)
2.\(\dfrac{3\left(\sin x+\cos x\right)}{\sin x-\cos x}=2+2\cos x\)
3.\(\dfrac{3\left(\sin x+\tan x\right)}{\tan x-\sin x}-2\cos x=2\)
4. \(1+\sin x+\cos x+\sin2x+\cos2x=0\)
5. \(2\sin x\left(1+\cos2x\right)+\sin2x=1+2\cos x\)
tính lim \(\dfrac{cosx}{x}\) và lim \(\dfrac{sin^2x}{x}\)khi x-> 0
Tìm khẳng định đúng trong các khẳng định sau:
( I ) f ( x ) = 1 x 2 - 1 liên tục với mọi x.
( II ) f ( x ) = sin x x có giới hạn khi x → 0.
( III ) f ( x ) = 9 - x 2 liên tục trên đoạn [-3; 3].
A. Chỉ (I) và (II).
B. Chỉ (II) và (III).
C. Chỉ (II).
D. Chỉ (III).
Tìm giới hạn F = lim x → + ∞ 3 sin x + 2 cos x x + 1 + x :
A. +∞
B. -∞
C. 5/2
D. 0
tính giới hạn lim(x→0)\(\dfrac{ }{\dfrac{2\sqrt{2x+1}-\sqrt[3]{x^2+x+8}}{x}}\)
=\(\dfrac{a}{b}\)
tính a-2b=?
Tính các giới hạn sau:
a) $\underset{x\to 3}{\mathop{\lim }}\,\left( x+2 \right);$
b) $\underset{x\to +\infty }{\mathop{\lim }}\,\left( {{x}^{2}}-x+1 \right).$
4. Tính giới hạn \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-x-1}{2x^2-x}_{ }\)
5. Tính giới hạn:
a) \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}_{ }\)
b) \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}_{ }\)
Giải các phương trình sau:
\(5\sin^22x-6\sin4x-2\cos^2x=0\)
\(2\sin^23x-10\sin6x-\cos^23x=-2\)
\(\sin^2x\left(\tan x+1\right)=3\sin x\left(\cos x-\sin x\right)+3\)
\(6\sin x-2\cos^3x=\frac{5\sin4x.\cos x}{2\cos2x}\)
Giải các PT sau
1. \(\cos^2\left(x-30^{\cdot}\right)-\sin^2\left(x-30^{\cdot}\right)=\sin\left(x+60^{\cdot}\right)\)
2. \(\sin^22x+\cos^23x=1\)
3. \(\sin x+\sin2x+\sin3x+\sin4x=0\)
4. \(\sin^2x+\sin^22x=\sin^23x\)
Tính giới hạn của lim tiến tới âm vô cùng (-x^3+x^2-x+1)