Ôn tập: Phân thức đại số

LH

Tính:

B = \(\dfrac{\text{(a^2 +b^2 +c^2)*(a+b+c)^2+(a*b+b*c+c*a)^2}}{\left(a+b+c\right)^2-\left(a\cdot b+b\cdot c+c\cdot a\right)}\)

C = \(\dfrac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\cdot\left(b-c\right)+b^2\cdot\left(c-a\right)+c^2\cdot\left(a-b\right)}\)

NT
26 tháng 11 2022 lúc 0:03

\(C=\dfrac{\left(b-c+c-a\right)^3+3\left(b-c\right)\left(c-a\right)\left(b-c+c-a\right)+\left(a-b\right)^3}{a^2b-a^2c+b^2c-b^2a+c^2a-c^2b}\)

\(=\dfrac{3\left(b-c\right)\left(c-a\right)\left(b-a\right)}{a^2b-b^2a-a^2c+b^2c+c^2a-c^2b}\)

\(=\dfrac{3\left(b-c\right)\left(c-a\right)\left(b-a\right)}{\left(a-b\right)\cdot ab-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}\)

\(=\dfrac{3\left(b-c\right)\left(a-c\right)\left(a-b\right)}{\left(a-b\right)\left(ab-ac-bc+c^2\right)}\)

\(=\dfrac{3\left(b-c\right)\left(a-c\right)}{a\left(b-c\right)-c\left(b-c\right)}=3\)

Bình luận (0)

Các câu hỏi tương tự
NY
Xem chi tiết
QN
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết
NN
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
NQ
Xem chi tiết
NM
Xem chi tiết