Đề sai rồi . Xem lại đề đi
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Đề sai rồi . Xem lại đề đi
Tìm x, biết :
a, \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{98\cdot99\cdot100}\right)x=-3\);
b, \(\left(\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}}\right)x=\frac{-1}{5}\).
c,\(\left(\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}}\right):x=\frac{-2001}{2002}\).
\(A=\left\{\frac{1999}{2011}-\frac{2011}{1999}\right\}-\left\{\frac{-12}{1999}-\frac{12}{2011}\right\}\)
\(B=\frac{2}{5}+\left(\frac{3}{11}+\frac{-2}{5}\right)\)
\(C=\frac{-5}{7}.\frac{4}{13}+\frac{-5}{7}.\frac{9}{13}+\frac{-2}{7}\)
\(D=\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(\frac{-9}{10}\right)\)
TÍNH HỢP LÍ
a)\(\frac{\frac{4}{17}-\frac{4}{49}-\frac{4}{131}}{\frac{-3}{17}+\frac{3}{49}+\frac{3}{131}}\)
b)\(\frac{-1}{2}+\frac{3}{5}+\frac{-1}{9}+\frac{1}{27}+\frac{7}{18}+\frac{4}{35}+\frac{2}{7}\)
c)\(\frac{3.8.15....9999}{4.9.16.....10000}\)
d)\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+...+\frac{1}{1999}}\)
Tính giá trị biểu thức(giút gọn biểu thức)
A=\(\left(\left(\frac{2}{193}-\frac{3}{386}\right)\cdot\frac{193}{17}+\frac{33}{34}\right):\left(\left(\frac{7}{2001}+\frac{11}{4002}\right)\cdot\frac{2001}{25}+\frac{9}{2}\right)\)
\(B=\left(1+2+3+4+.....+100\right)\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)\cdot\left(\frac{6}{3}\cdot12-2,1\cdot3,6\right)\)
C=\(\frac{2\cdot8^4\cdot27^2+4\cdot69}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)
\(F=1-\frac{1}{1+\frac{2}{1-\frac{3}{1-4}}}\)
ai làm đúng nhanh dễ hiểu thì mk tick cho
So sánh hai phân số sau:
A=\(\frac{1999^{2002}+1}{1999^{2001}+1}\)
và B=\(\frac{1999^{2001}+1}{1999^{2000}+1}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}\)
Tìm x.
TÌm x, biết: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{2001}\)
Tìm x biết
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
a) Chứng minh:
\(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+.....+\frac{1}{5^{2019}}>\frac{1}{5}\)
b) So sánh:
\(A=\frac{2^{1999}+1}{2^{1999}+2}\)\(và\) \(B=\frac{2^{1997}-1}{2^{1995}+2}\)