\(B=\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+....+\frac{1}{2014}\)
\(=\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(1+\frac{1}{2014}\right)+1\)
\(=\frac{2015}{2}+\frac{2015}{3}+....+\frac{2015}{2014}+\frac{2015}{2015}\)
\(=2015\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2014}+\frac{1}{2015}\right)\)
\(B=\frac{2014}{1}+\frac{2013}{2}+......+\frac{1}{2014}\)
\(B=\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)+1\)
\(B=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+\frac{2015}{2015}\)
\(B=2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)
\(B=\frac{2014}{1}+\frac{2013}{2}+......+\frac{1}{2014}\)
\(B=\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)+1\)
\(B=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+\frac{2015}{2015}\)
\(B=2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)
\(B=\frac{2014}{1}+\frac{2013}{2}+......+\frac{1}{2014}\)
\(B=\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)+1\)
\(B=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+\frac{2015}{2015}\)
\(B=2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)
\(B=\frac{2014}{1}+\frac{2013}{2}+......+\frac{1}{2014}\)
\(B=\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)+1\)
\(B=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+\frac{2015}{2015}\)
\(B=2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)