B=1*2*3+2*3*4+3*4*5+...+(n-1)n(n+1)
4B=1*2*3*4+2*3*4*(5-1)+3*4*5*(6-2)+...+(n-1)*n*(n+1)*[(n+2)-(n-2)]
4B=1*2*3*4+2*3*4*5-1*2*3*4+3*4*5*6-2*3*4*5+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
4B=(n-1)n(n+1)(n+2)
B=[(n-1)n(n+1)(n+2)]:4
Nho k cho minh voi nha
B=1.2.3+2.3.4+...+(n-1)n(n+1)
4B=4.1.2.3+4.2.3.4+...+4(n-1)n(n+1)
4B=(4-0)1.2.3+(5-1)2.3.4+...+[(n+2)-(n-2)](n-1)n(n+1)
4B=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
4B=(n-1)n(n+1)(n+2)
B=\(\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)