B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
=> 4B = 1.2.3.4 + 2.3.4.4 + (n-1).n(n+1).4
=> 4B =1.2.3.4 + 2.3.4.(5-1) + (n-1)n(n+1)(n+2-n+2)
=> 4B = 1.2.3.4+ 2.3.4.5- 1.2.3.4 + .... - (n-2)(n-1)n(n+1) + (n-1)n(n+1)(n+2)
=> 4B = (n-1)n(n+1)(n+2)
=> B = \(\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)