\(A=\frac{20}{1\cdot6}+\frac{20}{6\cdot11}+...+\frac{20}{51\cdot56}+\frac{20}{56\cdot61}\)
\(A=\frac{20}{5}\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{51}-\frac{1}{56}+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=4\cdot\left(1-\frac{1}{61}\right)\)
\(A=4\cdot\frac{60}{61}\)
\(A=\frac{240}{61}\)
\(A=\frac{20}{1.6}+\frac{20}{6.11}+...+\frac{20}{51.56}+\frac{20}{56.61}\)
\(A=\frac{20}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{51}-\frac{1}{56}+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=4.\left(1-\frac{1}{61}\right)\)
\(A=4.\frac{60}{61}=\frac{240}{61}\)