\(A=2^{2017}-(2^{2016}+2^{2015}+......+2^1+2^0)\)
Đặt \(B=2^{2016}+2^{2015}+.....+2^1+2^0\)
\(\Rightarrow2B=2^{2017}+2^{2016}+....+2^1+2^0\)
\(\Rightarrow2B-B=(2^{2017}+2^{2016}+...+2^0)-(2^{2016}+2^{2015}+...+2^1+2^0)\)
\(\Rightarrow B=2^{2017}-2^0\)
\(\Rightarrow A=2^{2017}-(2^{2017}-1)\)
\(\Rightarrow A=1\)
2A = 22018 - (22017 + 22016 + ....+ 21)
2A - A = [22018 - (22017 + 22016 + ....+ 21 )] - [22017 - (22016 + 22015 +..... + 21 + 20)
A = 22018 - 22017 - 22017 - 1
A = 22018 - (22017 +22017 +1)
A = 22018 - (22018 +1 )
A = -1