c\(\frac{\left(1+\frac{2012}{1}\right)\left(1+\frac{2012}{2}\right)....\left(1+\frac{2012}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)....\left(1+\frac{1000}{2012}\right)}\)
(4+6+8+10+...+2012).1/1000.(1/2+3/4+5/6)
(4+6+8+10+...+2012).1/1000.(1/2+3/4+5/6)
giúp mik vs
(4+6+8+10...+2012)1/1000. (1/2+3/4+5/6)
giải chi tiết giùm mình nhoa
Cho |1-a| <506 ; |b|<2 ; |b-1|<1000
CMR : |ab-1| < 2012
Trình bày cách làm $\left(4+6+8+...+2012\right)\frac{1}{1000}.\left(\frac{1}{2}+\frac{3}{4}+\frac{5}{6}\right)$
cho A=( 1/2+1/3+1/4+...+1/2013) / ( 2012+2012/2+2011/3+...+1/2013). Tim A
Rút gọn A= (1/2+ 1/3+ 1/4+.....+ 1/2013)/ ( 2012+ 2012/2 + 2011/ 3+....+ 1/ 2013)
Rút gọn A= (1/2+1/3+1/4+...+1/2013)/(2012+2012/2+2011/3+...+1/2013)