\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10100}\right)=\frac{5049}{20200}\)
A=1/2(1/1.2-1/2.3+1/2.3-1/3.4+.......+1/99.100-1/100.101)
A=1/2(1/1.2-1/100.101)
A=1/2(1/1.2-1/100.101)=5049/202000
A=1/2(1/1.2-1/2.3+1/2.3-1/3.4+.......+1/99.100-1/100-1/101
A=1/2(1/1.2-1/101)
A=5049/20200