CA

Tính :

A = \(\frac{-1}{2.4}\)\(\frac{-1}{4.6}\)+\(\frac{-1}{6.8}\)+ ..... + \(\frac{-1}{98.100}\)

TV
28 tháng 3 2019 lúc 10:12

 \(A=\frac{-1}{2.4}+\frac{-1}{4.6}+\frac{-1}{6.8}+...+\frac{-1}{98.100}\Leftrightarrow.\)\(-2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\Leftrightarrow.\)

\(-2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{100}\Leftrightarrow.\)

\(-2A=\frac{1}{2}-\frac{1}{100}\Leftrightarrow-2A=\frac{49}{100}\Leftrightarrow A=\frac{-49}{200}.\)

ĐÁP SỐ :   \(A=\frac{-49}{200}.\)

Bình luận (0)
NN
28 tháng 3 2019 lúc 10:13

\(\frac{-49}{200}\)

Bình luận (0)
KN
28 tháng 3 2019 lúc 10:34

\(A=\frac{-1}{2.4}+\frac{-1}{4.6}+\frac{-1}{6.8}+...+\frac{-1}{98.100}\)

\(\Leftrightarrow A=\frac{-1}{4}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\right)\)

\(\Leftrightarrow A=\frac{-1}{4}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(\Leftrightarrow A=\frac{-1}{4}\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\Leftrightarrow A=\frac{-1}{4}.\frac{49}{50}\)

\(\Leftrightarrow A=\frac{-49}{200}\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
HT
Xem chi tiết
AV
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
Xem chi tiết