\(25=\left(a+b\right)^2=a^2+b^2+2ab\)
\(\Leftrightarrow12+a^2+b^2=25\)
\(\Leftrightarrow a^2+b^2=13\)
\(\Leftrightarrow a^2+b^2-2ab=1\)
\(\Leftrightarrow\left(a-b\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=1\\a-b=-1\end{cases}}\)
\(25=\left(a+b\right)^2=a^2+b^2+2ab\)
\(\Leftrightarrow12+a^2+b^2=25\)
\(\Leftrightarrow a^2+b^2=13\)
\(\Leftrightarrow a^2+b^2-2ab=1\)
\(\Leftrightarrow\left(a-b\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=1\\a-b=-1\end{cases}}\)
Tính a3 + b3, biết a.b = 6 và a + b = -5
Tính a^4-b^4
biết a+b=5 và a.b=6
Tính a^4+b^4
Biết a+b=5 và a.b=6
Bài 1:
a, Cho a + b = -5 và a.b= 6 . Tính a3+b3
b, Cho a-b=9 và a.b = 22 . Tính a3- b3
a) Tìm a và b. Biết a-b=12 và a.b=15
b) Tìm các số nguyên a và b. Biết a+b=a.b+6
Bài 1.
a, Cho\(\dfrac{a}{3}\)=\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\) và a+b+c=24. Tính M = a.b + b.c + ca
b, Cho\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)= \(\dfrac{c}{4}\)=\(\dfrac{d}{5}\) và a+b+c+d = -42. Tính N = a.b +c.d
Bài 2.
a, Biết\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\) và x+y+z= 24. Tính A = 3x + 2y - 6z
b, Biết\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\) và x-y+z = 6\(\sqrt{2}\). Tính B = xy - yz
Chứng minh rằng:
(a + b)2 = (a – b)2 + 4ab
(a – b)2 = (a + b)2 – 4ab
Áp dụng:
a) Tính (a – b)2, biết a + b = 7 và a.b = 12.
b) Tính (a + b)2, biết a – b = 20 và a.b = 3.
Tính a5 +b5 biết a+b=7 và a.b=9
Bài 1:Cho a+b=5 và a.b=-6 Tính:
a) a.(4a+b)+4b
b) a2+b2
c) a4+b4
Bài 2: 2a-b=5 và a.b=3
a) a.(b-2)+b
b) 4.a2+b2