A = 1 + 3 + 3^2 + ...+ 3 ^100
3A = 3 + 3 ^2 + 3^3 + ... +3^101
3A - A = ( 3 + 3 ^2 + 3^3 + ... +3^101)
- ( 1 + 3 + 3^2 + ...+ 3 ^100)
2A = 3 ^101 - 1
A = \(\frac{\text{ 3 ^101 - 1}}{2}\)
Ta có:
A= \(1+3+3^2+...+3^{100}\)
3A=\(3\times\left(1+3+3^2+...+3^{100}\right)\)
3A=\(3+3^2+3^3+...+3^{101}\)
\(3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\)(1+3+3^2+...+3^100)
2A=1+3^101
A=(1+3^101)/2