DT

Tính 

A= 1+1/2+1/2^2+1/2^3+.....+1/2^100

B= 1+1/3+1/3^2+1/3^3+...+1/3^100

Giúp mk vs!!!!

KT
29 tháng 7 2018 lúc 10:08

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

\(\Rightarrow\)\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

\(\Rightarrow\)\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow\)\(A=2-\frac{1}{2^{100}}\)

\(B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow\)\(3B=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\)

\(\Rightarrow\)\(3B-B=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(\Rightarrow\)\(2B=3-\frac{1}{3^{100}}\)

\(\Rightarrow\)\(B=\frac{3-\frac{1}{3^{100}}}{2}\)

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
Xem chi tiết
GL
Xem chi tiết
TT
Xem chi tiết
BD
Xem chi tiết
PA
Xem chi tiết
VN
Xem chi tiết
MP
Xem chi tiết
LM
Xem chi tiết