LP

TÍNH 

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100

 

NT
12 tháng 3 2017 lúc 12:23

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
T5
Xem chi tiết
DK
Xem chi tiết
TT
Xem chi tiết
ET
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết