(100-1.1).(100-2.2)....(100-10.10)...(100-50.50)
=(100-1.1).(100-2.2)....0...(100-50.50) ( vì 10.10=100)
=0
(100-1.1).(100-2.2)....(100-10.10)...(100-50.50)
=(100-1.1).(100-2.2)....0...(100-50.50) ( vì 10.10=100)
=0
\(A=\frac{1}{2.2^3}+\frac{1}{2.2^4}+\frac{1}{2.2^5}+....+\frac{1}{2.2^{100}}\)=?
Rút gọn biểu thức: A = 2.2^2 + 3.2^3 + 4.2^4 +.....+ 100.2^100.
Rút gọn biểu thức: A = 2.2^2 + 3.2^3 + 4.2^4 +.....+ 100.2^100
n!=1.2.3. ...... .n Tính : 1.1!+2.2!+3.3!+4.4!+5.5!
Tính chính xác tổng S = 1.1! + 2.2! + 3.3! + 4.4! + ... + 16.16!.
So sánh A và B biết: A=2.1+2.3+3.5+.....+2.97+2.99
B=2.2+2.4+2.6+.....+2.98 +100
Cho A=1/1.1+1/2.3+1/3.5+1/3.7...+1/50.99.
a/ Chứng minh A=1/50+1/51+1/52+...+1/100.
b/ Chứng minh A<7/6.
A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)\(< \frac{3}{4}\)
B=\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\)
C=\(1+3+3^2+3^3+...+3^{100}\)
D=\(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
M= CMR:1.1!+2.2!+.......+n.n!-1