NT

Tìm\(x,y\in N,\)biết:

\(36-y^2=8\left(x-2010\right)^2\)

NP
21 tháng 7 2018 lúc 16:30

\(8\left(x-2010\right)^2\ge0\Rightarrow36-y^2\ge0\)

\(\Rightarrow36\ge y^2\)\(\Rightarrow y^2\in\left\{0,1,4,9,16,25,36\right\}\)

 Xét \(y^2=0\Rightarrow8\left(x-2010\right)^2=36\Rightarrow\left(x-2010\right)^2=\frac{36}{8}=\frac{9}{2}\)(loại)

Xét \(y^2=1\Rightarrow8\left(x-2010\right)^2=36-1=35\Rightarrow\left(x-2010\right)^2=\frac{35}{8}\)(loại)

Bạn xét tiếp nha :))

Bình luận (0)
EC
19 tháng 6 2019 lúc 21:37

Ta có: (x - 2010)2 \(\ge\)\(\forall\) x <=> 8(x - 2010)2 \(\ge\)\(\forall\)x

<=>36 - y2 \(\ge\)0

<=> 36 \(\ge\)y2

<=> y2 \(\le\)36

<=> |y| \(\le\)6

Do y \(\in\)N  => 0 \(\le\)y < 6

+) Với y = 0 => 36 - 02 = 8(x - 2010)2

=> 36 = 8(x - 2010)2

=> (x - 2010)2 = 36 : 8 (ko thõa mãn)

+) Với y = 1 => 36 - 12 = 8(x - 2010)2

=> 35 = 8(x - 2010)2

=> (x - 2010)2 = 35 : 8 (ko thõa mãn)

+) Với y = 2 => 36 - 22 = 8(x - 2010)2

=> 32 = 8(x - 2010)2

=> (x - 2010)2 = 32 : 8

=> (x - 2010)2 = 4 = 22

=> \(\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}}\)

=> \(\orbr{\begin{cases}x=2012\\x=2008\end{cases}}\)

+) Với y = 3 => 36 - 32 = 8(x - 2010)2

=> (x - 2010)2 = 27 : 8 (ko thõa mãn)

+) Với y = 4 => 36 - 42 = 8(x - 2010)2

=> (x - 2010)2 = 20 : 8 (ko thõa mãn)

+) Với y = 5 => 36 - 52 = 8(x - 2010)2

=> (x - 2010)2 = 11 : 8 (ko thõa mãn)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
MN
Xem chi tiết
NH
Xem chi tiết
PS
Xem chi tiết