TM

Tìm x,y,z thỏa mãn 

x/2=y/3=3z và 2x-3y+4z=1

LD
22 tháng 8 2020 lúc 7:32

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=3z\\2x-3y+4z=1\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{\frac{1}{3}}\\2x-3y+4z=1\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2x}{4}=\frac{3y}{9}=\frac{4z}{\frac{4}{3}}\\2x-3y+4z=1\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{4}=\frac{3y}{9}=\frac{4z}{\frac{4}{3}}=\frac{2x-3y+4z}{4-9+\frac{4}{3}}=\frac{1}{-\frac{11}{3}}=-\frac{3}{11}\)

\(\frac{2x}{4}=-\frac{3}{11}\Rightarrow x=-\frac{6}{11}\)

\(\frac{3y}{9}=-\frac{3}{11}\Rightarrow y=-\frac{9}{11}\)

\(\frac{4z}{\frac{4}{3}}=-\frac{3}{11}\Rightarrow z=-\frac{1}{11}\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
CQ
22 tháng 8 2020 lúc 7:40

\(\frac{x}{2}=\frac{y}{3}=3z\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{\frac{1}{3}}\)  

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{\frac{1}{3}}=\frac{2x-3y+4z}{2\cdot2-3\cdot3+4\cdot\frac{1}{3}}=\frac{1}{-\frac{11}{3}}=-\frac{3}{11}\)                

\(\frac{x}{2}=-\frac{3}{11}\Rightarrow x=-\frac{3}{11}\cdot2=-\frac{6}{11}\)             

\(\frac{y}{3}=-\frac{3}{11}\Rightarrow y=-\frac{3}{11}\cdot3=-\frac{9}{11}\)                 

\(\frac{z}{\frac{1}{3}}=-\frac{3}{11}\Rightarrow z=-\frac{3}{11}\cdot\frac{1}{3}=-\frac{1}{11}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
22 tháng 8 2020 lúc 8:49

Ta có :

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=3z\\2x-3y+4z=1\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{\frac{1}{3}}\\2x-3y+4z=1\end{cases}\Rightarrow}\hept{\begin{cases}\frac{2x}{4}=\frac{3y}{9}=\frac{4z}{\frac{4}{3}}\\2x-3y+4z=1\end{cases}}}\)

Áp dụng t/c dãy tỉ số bằng nhau :

\(\frac{2x}{4}=\frac{3y}{9}=\frac{4z}{\frac{4}{3}}=\frac{2x-3y+4z}{4-9+\frac{4}{3}}=\frac{1}{-\frac{11}{3}}=-\frac{3}{11}\)

\(\hept{\begin{cases}\frac{2x}{4}=-\frac{3}{11}\Rightarrow x=-\frac{6}{11}\\\frac{3y}{9}=-\frac{3}{11}\Rightarrow y=-\frac{9}{11}\\\frac{4z}{\frac{4}{3}}=-\frac{3}{11}\Rightarrow z=-\frac{1}{11}\end{cases}}\)

Vậy ............

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KS
Xem chi tiết
NA
Xem chi tiết
NS
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết
NH
Xem chi tiết
KN
Xem chi tiết
NN
Xem chi tiết
NM
Xem chi tiết