\(x.x+y.y+z.z=12\)
\(\Leftrightarrow\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}=\frac{12}{3}=4\)
\(\Rightarrow x^2=1.4=4\Leftrightarrow x=2\)
\(y^2=1.4=4\Leftrightarrow y=2\)
\(z^2=1.4=4\Leftrightarrow z=2\)
Áp dụng BĐT Cauchy - schwarz:
\(x^2+y^2+z^2=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{36}{3}=12\)
(Dấu "="\(\Leftrightarrow x=y=z\))
\(pt\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=2\\x=y=z=-2\left(L\right)\end{cases}}\)(Vì x + y + z = 6)
Vậy x = y = z = 2