biet x,y,z>0 thoa man căn xy +căn yz+ căn zx=1.tìm min A=x^2/(x+y) +y^2/(y+z)+z^2/(z+x)
cho A=x^2/(x+y)+y^2/(z+y)+z^2/(x+z) với x,y,z >0 thoa mãn A=căn xy +căn yz +căn xz .GTNN của A
căn bậc 2 của (x) +căn bậc 2 của (y)+căn bậc 2 của (z)=2 ; x+y+z=2 tính P= căn bậc 2 của ((x+1)(y+1)(z+1)) ((căn bậc 2 của (x) /(x+1))+(căn bậc 2 của (y) / (y+1))+(căn bậc 2 của (z) / (z+1))
căn bậc 2 của (x) +căn bậc 2 của (y)+căn bậc 2 của (z)=2 ; x+y+z=2 .tính P= căn bậc 2 của ((x+1)(y+1)(z+1)) ((căn bậc 2 của (x) /(x+1))+(căn bậc 2 của (y) / (y+1))+(căn bậc 2 của (z) / (z+1))
cho 1/x +1/y +1/z=1. chứng minh; căn của (x+yz) + can của (y+xz) +can của (z+xy) lớn hơn hoặc bằng can của xyz+ căn x+ căn y + can z
cho x,y,z>0 và xyz=1 cmr :
căn bậc 2 của (1+x^3+y^3)/xy + căn bậc 2 của (1+y^3+z^3)/yz căn bậc 2 của (1+z^3+x^3)/xz > hoặc bắng 3can3
tìm số có 3 chữ số xyz;biết \(\sqrt[3]{xyz}=\)(x+y+z)1994^n
(lưu ý \(\sqrt[3]{xyz}\) là căn bậc 3 của số xyz ko phải căn bậc 3 của x nhân y nhân z)
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
Cho x,y,z >0 . xy+yz+xz=1
Tìm A= x × căn của (((1+y^2)(1+z^2))/1+x^2) + y × căn của (((1+z^2)(1+x^2))/1+y^2) + z × căn của (((1+x^2)(1+y^2))/1+z^2)