CL

tìm x,y,z sao cho 

\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

PD
1 tháng 11 2018 lúc 15:43

\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(x^2-2x+1+\left(\sqrt{3}y\right)^2+2.6.y+\left(2\sqrt{3}\right)^2+\left(\sqrt{2}z\right)^2+2.2.z+\left(\sqrt{2}\right)^2=0\)

\(\left(x-1\right)^2+\left(\sqrt{3}y+2\sqrt{3}\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2=0\)

\(\Rightarrow x=1;y=-2;z=-1\)

Bình luận (0)
ST
1 tháng 11 2018 lúc 15:44

<=>(x2-2x+1)+(3y2+12y+12)+(2z2+4z+2)=0

<=>(x-1)2+3(y+2)2+2(z+1)2=0

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\3\left(y+2\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=-1\end{cases}}}\)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
DT
Xem chi tiết
NP
Xem chi tiết
PH
Xem chi tiết
TH
Xem chi tiết
TN
Xem chi tiết
VD
Xem chi tiết
HC
Xem chi tiết
NT
Xem chi tiết