Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TL

Tìm x,y,z nguyên thỏa mãn 0<x<y<z: 2x+2y+2z=4736

NM
24 tháng 11 2021 lúc 21:35

\(x=7;y=9;z=12\)

\(2^x+2^y+2^z=4736\\ \Rightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=4736\)

Ta có \(0< x< y< z\Rightarrow y-z>0;x-z>0\)

\(\Rightarrow1+2^{y-x}+2^{z-x}\) lẻ 

\(\Rightarrow4736=2^7\cdot37=2^x\left(1+2^{y-x}+2^{z-x}\right)\\ \Rightarrow\left\{{}\begin{matrix}x=7\\2^{y-x}+2^{z-x}+1=37\left(1\right)\end{matrix}\right.\\ \Rightarrow2^{y-7}+2^{z-7}=36\\ \Rightarrow2^{y-7}\left(1+2^{z-y}\right)=36=2^2\cdot3^2\)

Mà \(0< y< z\Rightarrow z-y>0\Rightarrow1+2^{z-y}\) lẻ

\(\Rightarrow\left\{{}\begin{matrix}y-7=2\\1+2^{z-y}=3^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=9\\2^{z-9}=8=2^3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=9\\z=12\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(7;9;12\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QL
Xem chi tiết
HB
Xem chi tiết
BB
Xem chi tiết
NN
Xem chi tiết
Xem chi tiết