NH

Tìm x,y,z nguyên dương biết x+y+z+9=2xyz

HL
6 tháng 4 2015 lúc 22:27

2xyz=x+y+z+9

=>2=1/yz+1/xz+1/xy+9/xyz

 nếu x>=y>=z>=1

=>2=< (1/z^2)+(1/z^2)+(1/z^2)+(1/z^2)=(1/z^2)4

=>z^2=<24

=>z=1 ;2 ;3 ;4

rồi thay vào tìm tiếp x ;y

Bình luận (0)
DD
15 tháng 1 2018 lúc 19:29

 xyz = 9 + x + y + z 
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz 
giả sử: x ≥ y ≥ z ≥ 1, ta có: 
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2 
=> z^2 ≤ 12 => z = 1, 2 , 3 
*z = 1: 
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y 
=> y ≤ 3 => y = 1,2,3 
y =1 => x= 11 + x (vô nghiệm) 
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1) 
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên) 

* z = 2 
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y 
=> y ≤ 5/2 => y = 2 
=> 4x = 13 + x (không có nghiệm x nguyên) 

* z =3: 
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y 
=> y ≤ 14/3 => y = 3, 4 
y = 3 => 9x = 15 + x (không có nghiệm x nguyên) 
y = 4 => 12x = 16 + x (không có nghiệm x nguyên) 

Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
PA
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
ND
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
PP
Xem chi tiết