Ta có : (x - 3)2 \(\ge0\forall x\in Z\)
|2y - 6| \(\ge0\forall x\in Z\)
16z2 \(\ge0\forall x\in Z\)
Mà : (x - 3)2 + |2y - 6| + 16z2 = 0
Nên : \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left|2y-6\right|=0\\16z^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-6=0\\z^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\2y=6\\z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=3\\z=0\end{cases}}\)
Vậy x = 3 , y = 3 , z = 0 .